BE Semester- IV ${ }^{\text {th }}$ (Biomedical Department) Question Bank

(DIGITAL DESIGN TECHNIQUES)

All questions carry equal marks (10 marks)

Q. 1	Perform the following operation. $\begin{array}{lll} (24.6) 10=(&) 2 \\ (615) 8=(&) 16 \\ (725.63) 8=(&) 2 \\ (35.48) 10=(&) \text { Exceess-3 } \end{array}$
Q. 2	Find 10's, 2's, 9's, 1's Complement following value: $\begin{aligned} & (3460) 10 \\ & (7520) 10 \\ & (101110) 2 \\ & (1110110) 2 \end{aligned}$
Q. 3	Convert Decimal to Binary: $(513) 10$ $(676) 10$ $(105.3174) 10$ $(119) 10$
Q. 4	Convert Binary to Decimal: $\begin{aligned} & (1110100) 2 \\ & (1010111) 2 \\ & (110110) 2 \\ & (1101.0101) 2 \end{aligned}$
Q. 5	Convert decimal to hexadecimal: $(227) 10$ $(876) 10$ $(93.76) 10$ $(143) 10$
Q. 6	Convert decimal to octal: $(513) 10$ $(676) 10$ $(117) 10$ $(126.43) 10$
Q. 7	$\begin{aligned} & \text { Solve the following: } \\ & (110101)_{2} *(1001)_{2} \\ & (100111)_{2}-(100101)_{2} \\ & (11100101)_{2}-(1100111)_{2} \\ & (1010)_{2} *(11)_{2} \end{aligned}$
Q. 9	Solve using 10 's complement method: $\begin{aligned} & 46370-09230 \\ & 3240-6730 \end{aligned}$

Q.21	Explain the following in detail:RS FLIP FLOP, JK FLIP FLOP						
Q.22	Draw \& explain logic gates along with input output signals.						
Q.23	Discuss different logic families in detail.						
Q.24	What do you mean by multiplexer, Demultiplexer, encoder \& decoder? Differentiate between them.						
Q.25	Explain 4-bit synchronous \& asynchronous up \& down counter.						
Q.26	What is counter? Explain in detail ripple counter						
Q.27	Explain in detail 4 bit right \& left shift register.						
Q.28	Write a short note on RAM \& ROM.	$\left	\begin{array}{ll	}\hline \text { Q.29 } & \text { Elaborate On I'L, ECL, MOS, CMOS. }\end{array}\right	$	Q.30	Explain HDL based Digital design.
:---	:---	:---					

